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Automated Detection of Threat Objects

Using Adapted Implicit Shape Model
Vladimir Riffo and Domingo Mery, Member, IEEE

Abstract—Baggage inspection using X-ray screening is a pri-
ority task that reduces the risk of crime and terrorist attacks.
Manual detection of threat items is tedious because very few
bags actually contain threat items and the process requires a
high degree of concentration. An automated solution would be a
welcome development in this field. We propose a methodology for
automatic detection of threat objects using single X-ray images.
Our approach is an adaptation of a methodology originally
created for recognizing objects in photographs based on Implicit
Shape Models. Our detection method uses a visual vocabulary
and an occurrence structure generated from a training dataset
that contains representative X-ray images of the threat object
to be detected. Our method can be applied to single views of
grayscale X-ray images obtained using a single energy acquisition
system. We tested the effectiveness of our method for the detection
of three different threat objects: razor blades, shuriken (ninja
stars) and handguns. The testing dataset for each threat object
consisted of 200 X-ray images of bags. The true positive and
false positive rates (TPR, FPR) are: (0.99, 0.02) for razor blades,
(0.97, 0.06) for shuriken and (0.89, 0.18) for handguns. If other
representative training datasets were utilized, we believe that our
methodology could aid in the detection of other kinds of threat
objects.

Index Terms—Object categorization; object recognition; object
detection; implicit shape model; X-ray testing; baggage screen-
ing; threat objects.

I. INTRODUCTION

Over the past few years, automated inspection systems have

been developed to conduct X-ray inspections effectively and

efficiently and to perform difficult, tedious and sometimes

dangerous tasks. The literature review [1] shows that there

are numerous areas in which X-ray testing can be applied.

The most important applications are casting inspection, where

automated systems are very effective; food quality evaluation,

where X-ray imaging is used to describe certain products;

welding and cargo, where inspection procedures are semi-

automated; and baggage screening, where human inspection

is still required. In the latter case, automated X-ray test-

ing remains an open question due to: i) loss of generality,

which means that approaches developed for one task may

not transfer well to another; ii) deficient detection accuracy,

which means that there is a fundamental tradeoff between false

alarms and missed detections; iii) limited robustness given

that requirements for the use of a method are often met for

simple structures only; and iv) low adaptiveness in that it

may be very difficult to accommodate an automated system
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to design modifications or different specimens. The objective

of our work is to develop a methodology that automatically

recognizes objects in X-ray images. We believe that our

method can be a helpful tool in applications such as baggage

screening, where recognition of threat objects is a matter of

utmost importance.

Baggage inspection using X-ray screening is a priority task

that reduces the risk of crime and terrorist attacks. Since 9/11,

aviation security screening with X-ray scanners has become

a very important process at airports. However, inspection is

a complex task because threat items are very difficult to

detect when placed in closely packed bags, occluded by other

objects, or rotated, thus presenting an unrecognizable view

[2]–[5]. Manual detection of threat items by human inspectors

is extremely demanding. On the one hand, it is tedious because

very few bags actually contain threat items. On the other

hand, it is stressful because the work of identifying a wide

range of objects, shapes and substances (metals, organic and

inorganic substances) takes a great deal of concentration. In

addition, human inspectors receive only minimal technological

support. Furthermore, during rush hours at airports, they have

only a few seconds to decide whether or not a bag contains

a threat item. Since each operator must screen many bags,

the likelihood of human error becomes considerable over a

long period of time even with intensive training. The literature

suggests that detection performance is only about 80-90% [6].

The detection of objects in X-ray images is a complex

task for a human inspector or a computer because the X-

ray images are shadow images that correspond to perspective

projections of objects. Most X-ray screening systems have

been designed to improve the quality of X-ray images through

segmentation [7], [8] and pseudo-color algorithms [9]–[11].

Some approaches use automated detection of threat objects

with single or multiple views on a single or dual-energy X-

ray [1]. Methods based on a bag of visual words (BoW) [12]

have performed well. There is a similar method for detect-

ing firearms [13] using a dual-view approach with pseudo-

colored X-ray baggage images (single-energy). Support vector

machines (SVM) and dual-energy multiple views with X-

ray images also have been used [14]. Recently, algorithms

based on multiple X-ray views have been reported in the

literature. These include a synthesis of Kinetic Depth Effect

X-ray (KDEX) images based on SIFT-features [15] in order

to increase detection performance [16]; X-ray active vision

that is able to adjust the viewpoint of the target object in

order to obtain better X-ray images (detecting razor blades in

different cases) [17]; 3D-reprojections [18], [19]; and tracking

across multiple X-ray views in order to verify the diagnoses
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performed using a single view [20], [21]. In all of these

approaches, detection of threat objects in single views plays a

key role.

This research is based on two problems. First, it is very dif-

ficult to achieve acceptable recognition rates in the automated

detection of threat objects in baggage screening. This is mainly

due to the following factors: view difficulty, superposition and

bag complexity. Second, there is a need to support human

inspection tasks at screening in order to reduce the probability

of human error, mainly due to tiredness and stress. We propose

a computer vision strategy that is able to detect threat objects.

The system considers them as a collection of independent

parts which are logically connected through a star structure.

Our approach, the ‘Adapted Implicit Shape Model’ (AISM),

is based on the well-known ‘Implicit Shape Model’ (ISM)

method [22] which was originally developed for recognition

of object categories such as cars, people and animals in

photographs. We adapted this methodology in order to detect

object categories in single X-ray images that were acquired

using a single-energy X-ray system. The proposed method

has two main steps. During the training stage, an object

category is characterized by estimating a visual vocabulary of

the object parts and a measurement of their spatial distribution.

In the testing stage, target objects are detected by searching

similar visual words and similar spatial distributions. The

fundamental difference between the original approach (ISM)

and the proposed approach (AISM) is that ISM only uses

the occurrence with the highest similarity score as a valid

detection. By contrast, AISM merges the occurrences with

scores that exceed a certain threshold. In addition, AISM does

not require a priori knowledge of the number of target objects

to be detected. ISM does require such knowledge.

We evaluated the performance of the proposed method in

the detection of three threat objects: razors blades, shuriken

(ninja stars) and handguns. We show the robustness of the

approach for regular shaped objects (razor blade and shuriken)

with a high true positive rate (TPR >0.95) at a low false

positive rate (FPR = 0.05). In the case of handgun, we obtained

acceptable rates (TPR = 0.89 at FPR = 0.18) due to the

irregular shape of the object, which causes scattered detections

inside and outside of the object. These preliminary results are

promising because they establish an approach for the detection

of object categories in single X-ray images. We believe that

our algorithm could be a helpful tool for human inspectors. In

the future, we will improve its performance by incorporating

a multiple view analysis and active vision [17], [21].

The rest of this paper is organized as follows: Section

II provides a detailed discussion of the proposed method

for the characterization and the detection of threat objects

(razor blades, shuriken and handguns); Section III presents

experimental analysis of this work, which was applied to

detection of threat objects in X-ray images; and Section IV

offers conclusions related to our work and discusses areas that

may be explored in the future.

II. PROPOSED METHOD

In this section, we explain the proposed approach, which

can be used to automatically identify objects in X-ray images.

Figure 1. Acquisition system of X-ray images for characterization of target
objects (see acquired X-ray images in Figure 2).

We adapted the well-known Implicit Shape Model (ISM)

[22] in order to increase its effectiveness and robustness

for the processing of X-ray images. Our proposed method,

the Adapted Implicit Shape Model (AISM), has two main

steps: A) target object characterization and B) target object

detection. The target object is a threat object to be detected

in X-ray images. The steps correspond to training and testing

stages, respectively. A more detailed discussion of the steps is

provided in the sections that follow.

A. Target object characterization

The characterization consists of three steps: 1) Training

image acquisition: acquisition of representative X-ray images

of the threat object, 2) Codebook generation: creation of a

visual vocabulary using keypoints and local visual descriptors,

and 3) Occurrence: position estimation of the keypoints related

to each visual word of the vocabulary.

1) Training image acquisition: A training database of N

X-ray images is used. In order to acquire representative X-ray

images of a target object in different poses, it is necessary

to implement an acquisition system that can acquire X-ray

images from different points of view, as shown in Figure 1 for

a razor blade. The object should be located inside a sphere of

expanded polystyrene (EPS). We used a sphere of EPS due to

its low X-ray absorption coefficient.

The proposed system allows users to acquire images of an

object in many poses by modifying the rotation angles; α, β

and γ, associated with each axis, X , Y and Z of the sphere,

respectively. All of the images of the razor blade are shown

in Figure 2. However, there are quadrants of images that are

visually repeated. Therefore, not all images are useful and

only a few were stored in the training database. The database

includes the images acquired in the values of the following an-

gles (see Figure 2): α ∈ {120◦, 150◦, 180◦, 210◦, 240◦}, γ ∈
{120◦, 150◦, 180◦, 210◦, 240◦}, and β ∈ {0◦, 30◦, 60◦, 90◦}.

The self-occluded images or images with positions that do not

allow for extraction of discriminating features (e.g., α = 90◦

or γ = 270◦) have been removed. They are presented in Figure
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Figure 2. Set of X-ray images of a target object (razor blade) acquired using different angles α, β and γ. The useful X-ray images for characterization are
enclosed in the red bounding box, i.e., images between α: [120◦, 150◦, 180◦, 210◦, 240◦] and γ: [120◦, 150◦, 180◦, 210◦, 240◦]. Each image enclosed in
the red bounding box is associated with a pose (1 to 25).

2 using the acronym ND (No Detection). Note that the database

shown in Figure 2 was made using a razor blade that has no

variability in its object category. For an object with large intra-

class variations, the database must include a representative set

of images of the object category. This procedure was also

performed for the shuriken and handgun.

This process allowed us to obtain a database of N training

images. For each training image, the object center (cjx, c
j
y)

measured in pixels is computed for j = 1, . . . , N .

2) Codebook generation: In this stage, a target object

is represented using a visual vocabulary of parts (category-

specific appearance codebook). Keypoints and their local

visual descriptors are extracted automatically from all train-

ing images of the target object using the well-known SIFT

approach [15]1. A keypoint is a distinguishable point in an

image, i.e., it represents a salient image region that can be

recognized by changing its viewpoint, orientation and scale.

Thus, SIFT-keypoints are distinguishable image points with

1The SIFT-descriptors (Scale Invariant Feature Transform) are local features
based on the appearance of the object at particular interest points (keypoints).
The descriptors are invariant to scale, rotation, lighting, noise and minor
changes in viewpoint. In addition, they are highly distinctive and relatively
easy to extract and match against a (large) database of local features.
The SIFT-descriptor of a keypoint consists of a 128-element vector, which
corresponds to a set of 16 gradient oriented histograms of 8 bins distributed
in a 4 × 4 grid. [15].

high data content in terms of the local change in signal. A

keypoint k has a descriptor fk and a location zk = (xk, yk)
with respect to (cjx, c

j
y), the center of the target object viewed

in its corresponding training image j, as shown in Figure 3.

In order to ensure that an effective visual vocabulary will

be developed for the various parts of the objects, it is impor-

tant that the visually similar parts with similar features are

clustered to create a codebook of local appearances. In our

approach, we use an agglomerative clustering strategy [22].

To initiate the process of agglomerative clustering, each SIFT-

feature fk, i.e., a vector of 128 elements, is assigned to a

cluster. The most similar pair of clusters is sequentially merged

until a stop criterion is met. The most similar pair of clusters

is established by minimizing a distance metric between the

clusters. Formally, a cluster p is defined as a set Cp which

contains all SIFT-features fk merged into it. As metric distance

between two clusters, p and q, we use:

d(Cp,Cq) = min(dE(fp, fq)) for fp ∈ Cp, fq ∈ Cq, (1)

where dE(fp, fq) = ||fp−fq|| is the Euclidean distance between

features fp and fq , i.e.:

dE(fp, fq) =

√

√

√

√

128
∑

i=1

(fp(i)− fq(i))2. (2)
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Figure 3. Target object characterization: training images, codebook generation and occurrence computation for a razor blade. Here the keypoints and descriptors
are visualized as small patches.

where fp and fq are SIFT-descriptors (with 128 elements each);

and fp(i) and fq(i) are the i-th element of vectors fp and

fq , respectively. As suggested in [15], [23], when comparing

histogram based descriptors –such as SIFT-descriptors– the

similarity is comoonly determined by measuring the Euclidean

distance. Thus, the smaller the Euclidean distance between the

descriptors, the more similar the keypoints2.

Agglomerative clustering is halted when a certain number of

clusters is obtained or when all pair-wise inter-cluster distances

are above a certain threshold. In our implementation, better

results were achieved using the former, where the pre-defined

number of clusters (M ) for each object category (razor blade,

shuriken and handgun) was set to 400. The center of mass of

cluster p is a codeword of our visual vocabulary defined as:

Cp =
1

np

∑

fp∈Cp

fp for p = 1, . . . ,M. (3)

where np is the number of keypoints clustered in set Cp. The

codebook is defined as the center of mass of each cluster

Cp, and the samples that belong to each cluster Cp, for

p = 1, . . . ,M .

3) Occurrence: In this step, a structure called ‘occurrence’

is computed for each cluster of a target object. The occurrence

of cluster p, denoted as set Zp, for p = 1, . . . ,M , contains

all of the keypoints of the training images whose SIFT-

descriptors are similar enough to the center of mass of cluster

2Other metrics –such as Mahalanobis distance– can be used as well, but at
a higher computational cost. In our preliminary experiments, Euclidean and
Mahalanobis metrics achieved similar levels of accuracy. For this reason, in
our approach we used Euclidean distance in the similarity measurement.

Cp estimated in (3). Formally, Zp is a set of coordinates

zk = (xk, yk) defined as follows:

Zp = {zk : dE(fk,Cp) < θ} (4)

where fk is the SIFT-descriptor of keypoint zk. As stated

in previous subsection, the coordinates of the keypoints are

defined with respect to the object center.

B. Object detection

Our method of target object detection in X-ray images has

four main stages: 1) Feature extraction, 2) Matched codebook

entries and voting space, 3) Merger of candidates detected,

and 4) Detection. Figure 4 shows a summary of this process.

A detailed explanation of each stage is presented below.

1) Features extraction: We apply an interest point detector

to the X-ray test image in order to extract all of the feature

keypoints ft. In general, X-ray images provide a large number

of keypoints. We first perform the match between all keypoints

fk stored in the training database and the keypoints test image

ft using the expression: dE(fk, ft) < θu, where θu is the

minimum distance threshold allowed between fk and ft. Those

keypoints that fulfill this expression will be denoted as f̂ . Thus,

f̂ ⊆ ft. Therefore, we remove the unnecessary keypoints from

the test image and keep only the useful set of keypoints f̂ .

Figure 4(a) shows an example of the resulting useful keypoints.

We use the SIFT-descriptor as an appearance measure for each

interest point.

2) Matched codebook entries and voting space: This stage

of AISM can be described using the probabilistic framework
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Figure 4. Detection process for target objects in X-ray images using an ISM approach. (a) Image with useful keypoints only f̂ , (b) Image with matched
codebook entries and voting space, (c) Detail of voting space, with candidates maxima detected, (d) Detail of voting space, with centers of candidates maxima
selected and cluster of keypoints (with blue subwindows WB), (d) and (e) Merged clusters (with magenta subwindow Wm), (e) Clusters in a previous
detection, (f) Ellipse fit to estimate the angle of orientation, (g) and (h) Final detection, (h) Razor blade detected in X-ray image.

proposed in [22], [24]. Let f̂ be the descriptor of a use-

ful keypoint observed at location ẑ = (x̂, ŷ) in the X-ray

test image. First, each keypoint f̂ is mapped to the closest

codeword Cp of our visual vocabulary learned in ‘codebook

generation’ step. The probability that f̂ matches codeword Cp

can be expressed as P(Cp|f̂ , ẑ). Then, a generalized Hough

Transform algorithm [25] captures the consistent configuration

of several visual words. Each matched codeword Cp generates

votes for instances of the object category on at different

positions λ = (λx, λy) according to its learned spatial occur-

rence distribution P(on, λ|Cp, ẑ). This probability distribution

corresponds to the occurrence locations of keypoints learned

during the training process. The previous distribution can be

formally expressed by the following marginalization:

P(on, λ|f̂ , ẑ) =
∑

p

P(on, λ|f̂ ,Cp, ẑ)P(Cp|f̂ , ẑ). (5)

for p = 1, . . . ,M , where M is the number of codewords in our

codebook. Since we have replaced the unknown descriptor f̂ in

the X-ray test image with a known interpretation Cp, the first

term of (5) can be treated as independent from f̂ . In addition,

we match descriptors to the codebook independent of their

location. Therefore, the equation is reduced to:

P(on, λ|f̂ , ẑ) =
∑

p

P(on, λ|Cp, ẑ)P(Cp|f̂), (6)

=
∑

p

P(λ|on,Cp, ẑ)P(on|Cp, ẑ)P(Cp|f̂). (7)

where, P(λ|on,Cp, ẑ) is the probabilistic Hough vote for an

object position λ given its class label on, codeword Cp and

keypoint location ẑ. The probability P(on|Cp, ẑ) specifies

confidence that the codeword Cp on keypoint position ẑ is

matched on the target category on. Finally, P(Cp|f̂) reflects

the probability of the matching between image descriptor f̂

and codeword Cp. If an image feature f̂ found at location

ẑ = (x̂, ŷ) matches to a codebook entry that has been

observed at position (xk, yk) on a training image (stored in

the occurrence Zp), it votes for the following coordinates:

xvote = x̂− xk and yvote = ŷ − yk. (8)

Thus, the vote distribution P(λ|on,Cp, ẑ) is obtained by

casting a vote for each stored observation from the learned oc-

currence distribution. The ensemble of all such votes together

is then used to obtain a non-parametric probability density

estimate for the position of the object center.

The score of an object detection hypothesis h = (on, λ) is

obtained by marginalizing all descriptors that contribute to this
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hypothesis. Considering the hypothesis probability on single-

descriptor votes, we arrive at the following equation:

P(on, λ) =
∑

i

P(on, λ|f̂i, ẑi)P(f̂i, ẑi), (9)

for i = 1, . . . , Nf where Nf is the number of useful

descriptors, P(f̂i, ẑi) is the probability of descriptor (f̂i, ẑi)
being sampled by the interest point detector for object on
and location λ. Nonetheless, we have to tolerate small shape

deformations in order to be robust to intra-class variation of

the object. We achieve this flexibility by integrating votes

over a fixed-size search window W (λ) during a Mean-Shift

search [26]. Instead of clustering keypoints with the Mean-

Shift algorithm for any position, we establish that a keypoint

can only be joined with another keypoint located near it

according to the fixed distance parameter. We set this param-

eter as 10% of training object size. By basing the decision

on single-descriptor votes and assuming a uniform prior for

the descriptors, we approximate probability function P(on, λ)
with the following score:

score(on, λ) =
∑

i

∑

λj∈W (λ)

P(on, λj |f̂i, ẑi). (10)

We require each sampled descriptor to have the same a-

priori weight in order to avoid error bias. Therefore, we

must normalize the vote weights such that the P(Cp|f̂) and

P(λ|on,Cp, ẑ) total one. Thus the weight P(Cp|f̂) is spread

uniformly over all valid descriptor interpretations Cp by

setting P(Cp|f̂) = 1
|C∗| , with |C∗| the number of matching

codebook entries. It would also be possible to let the P(Cp|f̂)
distribution reflect the relative matching scores. In addition

to the coordinates of the vote (xvote, yvote) –see eq. (8)–,

we compute its weight w, by setting the occurrence weight

P(on, λ|Cp, ẑ) =
1

|Zp|
, with |Zp| the number of occurrences

for each matched cluster. Thus, a vote is cast in the coordinates

(xvote, yvote) with weight w = P(on, λ|Cp, ẑ)P(Cp|f̂). The

restricted Mean-Shift process and normalization of votes is

represented in Figure 4(b) and 4(c) applied on X-ray test

image.

3) Merging of candidates detected: The original ISM ap-

proach defines the candidate with the highest score as a

valid detection. However, this is not necessarily true in X-

ray images because they have many dark areas which are

similar to one another, and the target object can have multiple

possible spatial orientations in baggage (similar descriptors

with different occurrences).In our case, we found that the

candidates with the highest scores are usually located close

to each other. We thus propose keeping the centers (sx, sy) of

each candidate selected whose score is greater than a threshold

value θs. This threshold value is adjusted during the analysis

of detector performance.

The merging process is similar to the procedure that we

designed in [17]. We follow two steps:

i) Clustering: The centers of each selected candidate (> θs)
are stored in Cm. For each candidate in Cm, we define

sub-windows WB that have at least θB keypoints of the

same pose. Figure 4(d), 4(e) and 4(f) show examples of

blue squares, WB , and Table I show the values of θB
and size of WB for all target objects. The pose associated

with each useful descriptor was stored in the first stage

of cleaning unnecessary descriptors. There are 25 valid

poses.

ii) Merging: All subwindows WB that are connected or

overlap will be merged in a new larger subwindow Wm

(see magenta rectangle in 4(d) and 4(e)).

4) Detection: The final detection is obtained as follows:

First, the subwindow Wm that encloses the highest number of

candidates (whose centers (sx, sy) ∈ Cm) will be selected if

this number is greater than the threshold θm. If no subwindow

meets this condition, no potential target object is detected.

With this threshold value, we validate the subwindow Wm as

the final detection. However, the size and orientation of Wm

do not necessarily correspond to the size and orientation of

the target object detected. Next, we estimate the orientation

of the final detection window WF , by calculating the centroid

of the selected candidates enclosed in Wm, through the use

of a well-known K-means clustering algorithm [27], which

minimizes the distance between each center (sx, sy) using

a single centroid K = 1. This is shown in Figure 4(f) and

4(g), where the centroid is represented by a red circle. In

order to estimate the orientation of the final window WF , an

ellipse is fitted to the keypoints contained in the selected sub-

window Wm, as is shown in Figure 4(f). The angle between

the major axis of the ellipse and the horizontal x axis will be

denoted by φ. This is precisely the value of the orientation of

the final windows WF (see the size of this window in Table

I). This angle estimation is determined for each target object

considering the dimensions of the object in the training image

with best view, i.e., pose number 13 (see pose 13 in Figure

2, where α = 180◦, β = 0◦ and γ = 180◦). An example

of oriented final detection of target object is shown in Figure

4(h).

III. EXPERIMENTAL RESULTS

In this section, we present the experimental evaluation of the

proposed method. The X-ray images of our experiments were

acquired using a digital X-ray detector (Canon, model CXDI-

50G), an X-ray emitter tube (Poskom, model PXM-20BT) and

a lead security cabinet to isolate the inspection environment3.

The size of the X-ray images was 2208 × 2688 pixels. Our

algorithm was tested for the detection of three different threat

objects that may be present inside a person’s baggage: razor

blades, shuriken and handguns (see examples in Figure 5).

These objects will be the ‘target objects’ to be detected by

our algorithm.

A. Training images

As explained in Section II-A1, X-ray images of each target

object must be acquired in representative poses (see Figure

1 for an example with razor blades). The number of training

images used in each experiment is: 100 for razor blades, 100

3 All images used in our experiments are available at http://dmery.ing.puc.
cl/index.php/material/gdxray.

http://dmery.ing.puc.cl/index.php/material/gdxray
http://dmery.ing.puc.cl/index.php/material/gdxray
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Figure 5. Threat objects inside of baggage; (a) Razor blade, (b) Shuriken
with 6, 7 and 8 points, and (c) Handguns.

for shuriken and 200 for handguns. It is worth noting that the

number of training images used in the detection of handguns

is higher due to the large inter-class variations.

B. Testing images

We use three sets of testing images (one for each target

object). Each testing set consists of 200 X-ray images with

the following subsets: a) 150 X-ray images with one target

object each, b) 30 X-ray images with two target objects each,

and c) 20 X-ray images with no target object. In other words,

each testing set contains Np = 150 + 2 × 30 = 210 target

objects that correspond to the positive class to be detected.

The images were acquired from different suitcases containing

several objects in many poses (see examples in Figure 9). On

average, each X-ray image contains 18 objects that are not

target objects (pens, CDs, clips, coins, screws, pliers, pins,

etc.). As such, each testing set contains Nn = 18×200 = 3600
objects that belong to the negative class.

Finally, all target objects are manually annotated by bound-

ing boxes (they correspond to the ‘ground truth’ of our

experiments denoted by BBgt). They outline the positions

of the target object in the X-ray images (see green bounding

boxes in Figure 9).

C. Evaluation methodology

The performance of our method is measured using the cri-

teria of quality evaluation of ‘PASCAL Visual Object Classes

Challenge’ [28], where a detection is considered correct if the

normalized area of overlap ao between the detected bounding

box BBdt and the ground truth bounding box BBgt exceeds

0.5, where ao is defined as follows:

ao =
area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
. (11)

with BBdt∩BBgt the intersection of the detected and ground

truth bounding boxes and BBdt∪BBgt their union, as shown

in Figure 6.

Usually, a detection is considered correct if a0 ≥ θa with

θa = 0.5. However, we included two additional cases: θa =
0.45 and θa = 0.4. They were taken into account because the

orientation of BBgt and BBdt can be very different in certain

detections, yielding an intersection area which is considerably

smaller than the intersection area that could be obtained for

similar orientations (see examples in Figure 7).

Figure 6. Evaluation criteria for comparing bounding boxes: Interpreting the
area of overlap criteria.

Figure 7. Detection of target objects (razor blade, shuriken and handgun)
with θa = 0.4.

In order to evaluate the performance, we ran our algorithm

on each test. The detections obtained were then assessed as

follows: We measured the total number of true positives (TP)

in the entire set, i.e., the number of detections that fulfill

a0 ≥ θa; and the total number of false positives (FP), i.e.,

the number of detections in which a0 < θa. Ideally, TP = Np

(the total number of target objects) and FP = 0. As mentioned

in section II-B3, our method includes a threshold (θs), which

can be tuned to achieve the best trade-off between correct

and false detections. In order to plot a Receiver Operation

Characteristic (ROC) curve, we compute the True Positive

Rate defined as TPR = TP/Np, and the False Positive Rate

defined as FPR = FP/Nn for different values of θs, where Nn is

the number of objects that do not correspond to target objects.

Ideally, TPR = 1 and FPR = 0. For each case we calculate

the area under the ROC curve (AUC) in order to measure the

performance. It should be 1, and we give TPR0.05, which is

the value of TPR at FPR = 0.05. Additionally, we compute

the best operation point (FPR∗, TPR∗), that is, the point on

the ROC curve whose distance to ideal operation point (FPR

= 0, TPR = 1) is minimal.

D. Parameter tuning

The proposed method has only six parameters that must be

tuned for each object category: thresholds θu, θB , θm, the size

Table I
TESTING PARAMETERS

Target Object Razor Blade Shuriken Handguns

θu 50,000 30,000 30,000
θB 5 3 1
θm 1 11 4

WB [pixels] 100 × 100 150 × 150 70 × 70
WF [pixels] 200 × 360 820 × 820 800 × 1,300
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of square WB and the height and width of rectangle WF . For

tuning purposes we created a ‘tuning dataset’ for each object

category, i.e., 10 randomly selected X-ray images taken from

the 200 X-ray images of the corresponding testing dataset.

The parameters were tuned manually using trial and error by

maximizing the accuracy on the tuning dataset. A table with

values is given in Table I for each object category. Thus, the

reported accuracy is obtained using the tuned parameters on

the whole testing dataset.

E. Results

True positives, false positives and ROC curves for the

detection of razor blades, shuriken and handguns are shown

in Figure 8. Table II summarizes the performance achieved

in each case. Figure 9 shows some examples of detection of

razor blades, shuriken and handguns. The ground truth, that

is, the target objects to be detected, is presented in green. The

detections are shown in red (for true positives) and blue (for

false positives).

Based on this evaluation, the detection of razor blades and

shuriken is clearly very effective. In both cases, we obtained a

high TPR at a very low FPR. The results for the detection of

handguns are somewhat lower (it was not possible to obtain a

high TPR at a very low FPR). Given that asymmetrical objects

have very disjointed occurrences with respect to the real center

of the object in our approach, the best results are obtained for

symmetrical objects like razor blades and shuriken.

Table II
SUMMARY OF PERFORMANCE OF AISM.

with ao ≥

Target Object Variable 0.5 0.45 0.4

Razor Blade AUC 0.9915 0.9942 0.9954
TPR0.05 0.9972 0.9998 1.0000
TPR∗ 0.9836 0.9870 0.9876
FPR∗ 0.0350 0.0250 0.0200

Shuriken AUC 0.9821 0.9832 0.9847
TPR0.05 0.9388 0.9487 0.9621
TPR∗ 0.9650 0.9717 0.9727
FPR∗ 0.0600 0.0600 0.0550

Handgun AUC 0.8715 0.9029 0.9225
TPR0.05 0.3219 0.4023 0.4754
TPR∗ 0.8261 0.8657 0.8884
FPR∗ 0.2250 0.1950 0.1700

F. Comparison with other methods

In this section, we present the results that were obtained by

comparing our method to three known methods that can be

used in object detection. The baseline methods used here are

the following:

• SIFT [15]: We use the single view detection applied in

our previous work on active inspection of X-ray images

[17].

• SURF [29]: We use the same proposed algorithm AISM

with SURF descriptors instead of SIFT-descriptors.

• ISM [22]: We use the original ISM approach, which was

developed to detect object categories such as cars, people

and animals.

Figure 8. ROC curves for the detection of razor blades, shuriken and handguns
for θa = 0.5, 0.45, 0.4. In all cases, the number of positive and negative
samples is Np = 210 and Nn = 3600, respectively. The measured points
are plotted as ‘o’. They are fitted to a curve y = a(1−exp(−γx)). The best
operation point (FPR∗,TPR∗) is shown as ‘*’.

In order to compare the approaches under identical con-

ditions, we used only the first 150 images of the testing set

(subset ‘a’ as explained in Section III-B with one razor blade

per image). Thus, the methods were tuned to detect only one

target object per image.

The number of TP and FP were computed for each method.

The Tables are not presented due to space considerations, but

the ROC curves are illustrated in Figure 10 and a summary
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Figure 9. Detection of AISM. Left) True positives: Examples of test images for which our target object detectors achieved perfect detection results (restricted
to ao ≥ 0.5). The ground truth annotations BBgt are displayed in green and detections BBdt are displayed in red. X-ray images of the razor blade (first row),
shuriken (second row) and handgun (third row) testing set are shown. Right) True and false positives: Examples of test images for which our target object
detectors missed objects or produced false detections. The ground truth annotations are displayed in green. True positives and false positives are displayed in
red and blue, respectively. X-ray images of the razor blade (first row), shuriken (second row) and handgun (third row) testing sets are shown.

Table III
COMPARISON OF AISM WITH OTHER METHODS.

AISM AUC 0.9917
(ours) TPR0.05 0.9975

TPR∗ 0.9849
FPR∗ 0.0350

SIFT AUC 0.9211
TPR0.05 0.4693
TPR∗ 0.8840
FPR∗ 0.1700

SURF AUC 0.6162
TPR0.05 0.1276
TPR∗ 0.6564
FPR∗ 0.3700

ISM AUC 0.9553
TPR0.05 0.6734
TPR∗ 0.9237
FPR∗ 0.1150

of the performance of each method is shown in Table III. In

order to compare the baseline methods and obtain different

values of TP and FP, we had to modify a threshold value

for each detector: i) In our approach (AISM), the activation

threshold was the value that keeps candidates detected with

higher scores in the image, ii) For our proposed algorithm

AISM using SURF descriptors, the activation threshold was

the same as in our AISM, i.e., the value that keeps candidates

detected with higher scores in the image, iii) In the SIFT-

Lowe approach, the activation threshold was the value that

keeps only useful SIFT-descriptors f̂ in the X-ray image, and

iv) In the original ISM approach, the activation threshold was

also the value that keeps only useful SIFT-descriptors in the

X-ray image.

In Figure 10, we compare the ROC curves of the four

methods. Our method has the best performance, achieving

TPR = 0.9975 at FPR = 0.05. We show that adapting ISM with

SIFT-descriptors significantly increases performance, since the

recognition accuracies obtained by our method are much

higher than those obtained by the other methods.

Figure 10. ROC curves of our method AISM in comparison with other three
known methods. In all cases, the number of positive and negative samples is
Np = 150 and Nn = 2700, respectively. The measured points are plotted
as ‘o’. They are fitted to a curve y = a(1− exp(−γx)). The best operation
point (FPR∗,TPR∗) is shown as ‘*’.

G. Implementation Details

We used open source libraries like VLFeat [30] for K-

means and SIFT to implement the AISM. We use a MATLAB

implementation of the Computer Vision System Toolbox for

SURF descriptors. The computing time depends on the number

of useful descriptors in the image, the spatial distribution and

number of occurrences. However, as a reference, the testing
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results for the detection of razor blades were obtained in ap-

proximately 35 seconds per image on an Intel(R) Core(TM) i7-

3537U CPU @ 2.00GHz with 4 cores and memory RAM of 8

GB. The algorithms were implemented in MATLAB R2013b,

64-bit (win64). The code for the MATLAB implementation is

available on our webpage4.

IV. CONCLUSIONS

We have presented a new method that can be used to

automatically identify certain threat objects in X-ray images.

Our approach proposes a training methodology in which a

target object is described using several X-ray images from

representative points of view. A test X-ray image is then

analyzed using that characterization. Our approach, which we

have called AISM, is based on Implicit Shape Models (ISM)

which have been adapted to deal with X-ray images. The main

adaptions are as follows: i) When extracting keypoints from

the test image, only useful ones are considered by AISM; and

ii) in ISM, only the occurrence with the highest similarity

score is considered to be a valid detection while AISM merges

the occurrences with scores whose values exceed a certain

threshold.

Unlike other methods, our approach was tested using very

realistic and challenging scenarios in grayscale X-ray images

(no pseudo-color). We used single view and single-energy

conditions without an image pre-processing algorithm. The

bags used in our experiments contained approximately 20

objects, one or two of which were target objects. As our

examples show (see Figure 9), the X-ray images that we

used are very complex because the bags were packed full

and contained occluded and rotated objects. Experiments were

carried out on three different datasets (razor blades, shuriken

and handguns) with 200 X-ray images each.

We show the robustness of the approach for regular shaped

objects (razor blade and shuriken) with a high true positive

rate (TPR >0.95) at a low false positive rate (FPR = 0.05) for

both objects. In the case of handguns, we obtained acceptable

rates (TPR = 0.89 at FPR = 0.18) due to the irregular shape

of the object, which caused scattered detections inside and

outside of the object. These preliminary results are promising

because they establish an approach for the detection of object

categories in single X-ray images. In addition, we compared

our algorithm to three other methods that can be used to detect

objects. As the ROC curves demonstrate, our proposed method

outperforms all of these methods in terms of true positive and

false positive rates.

Our approach was designed to detect only one object cate-

gory, but we repeated the training and testing strategy in three

different object categories in order to show the effectiveness

of the proposed method. Thus, several object categories can

be detected simultaneously. Using other representative training

datasets, our methodology could be used in the detection of

other threat objects (e.g. knives). We believe that our algorithm

could be a helpful tool for human inspectors.

All training and testing X-ray images used in this research

can be downloaded from our webpage3. The goal of this

4See http://dmery.ing.puc.cl/index.php/material/.

database is to share challenging X-ray images with researchers

around the world who are working on computer vision and

X-ray testing. To facilitate this, we have published the X-ray

images for razor blades, shuriken and handguns as well as the

manually annotated bounding boxes for the ground truth and

the AISM Matlab code of AISM4.

We suggest that future efforts in this area extend our

approach to other threat objects with irregular shapes. We

believe that promising results could be achieved in single view

detection if we extract SIFT-features only in object regions

that are discriminative. Thus, we could avoid for example

the description of very dark regions of the objects with

high absorption of X-rays and take into account only regions

near the contours of the objects (high gradients). Another

suggestion is to include this single view detector as the first

step in a multiple view strategy in which performance could

be improved by considering several single view detectors of

the object taken from different points of view.
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in 2011. He is currently pursuing his doctoral studies
at that institution. He is an Associate Professor in the
Department of Computer Engineering and Computer
Science at the Universidad de Atacama (UDA). His
main research interests include pattern recognition,
object detection, computer vision using multi-views

and X-ray testing, as well as ways to combine those approaches. He is a
past recipient of a scholarship from the ‘Comisión Nacional de Investigacin
Cientfica y Tecnolgica’ (CONICYT) and is a Fellow with GRIMA, the
Machine Intelligence Group at the Pontificia Universidad Católica de Chile.
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