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Abstract

X-ray testing of complex objects –such as luggage screening at airports– is usually performed

manually. This is not always effective, since it depends strongly on the pose of the objects of

interest (target objects), occlusion and human capabilities as well. Additionally, certain target

objects are difficult to be detected using only one viewpoint. For this reason, we developed

an active X-ray testing framework that is able to adequate the viewpoint of the target object in

order to obtain better X-ray images to analyze. The key idea of our method is to adapt auto-

matically the viewpoint of the X-ray images in order to project the target object in poses where

the detection performance should be higher. Thus, the detection inside of complex objects can

be performed in a more effective way. Using a robotic arm and a semi-automatic manipulator

system, the robustness and reliability of the method have been verified in the automated de-

tection of razor blades located inside of nine different objects showing promising preliminary

results: in 130 experiments we were able to detect 115 times the razor blade with 10 false

alarms, achieving recall of 89% and precision of 92%.

Keywords: X-ray inspection, baggage screening, framework, SIFT, active vision, target object

detection.

1 Introduction

It is well known that X-ray inspection can be performed by human inspectors or automatic

systems. Although humans in many cases can do the job better than machines, they are slower
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and tire quickly. In addition, the human inspectors are not always consistent and effective to

evaluate objects, because the inspection tasks are monotonous and exhausting, even for experts

in the field. Moreover, human experts are difficult to find or maintain in an industry, require

training and learning can take time.

The main areas of application of X-ray testing are:

• Baggage screening: Since 9/11 X-ray imaging has become an important issue. Threat items

are more difficult to recognize when placed in close packed bags, when superimposed by

other objects, and when rotated [1].

• Foods: In order to ensure food safety inspection, the following interesting applications have

been developed: detection of foreign objects in packaged foods, detection of fishbones in

fishes, identification of insect infestation, and fruit and grain quality inspection [2, 3].

• Cargos: With the ongoing development of international trade, cargo inspection becomes

more important. X-ray testing has been used for the evaluation of the contents of cargo,

trucks, containers, and passenger vehicles to detect the possible presence of many types of

contraband [4].

• Castings: In order to ensure the safety of construction of certain automotive parts, it is ne-

cessary to check every part thoroughly using X-ray testing. Within these parts –considered

important components for overall roadworthiness–, non-homogeneous regions like bubble-

shaped voids or fractures, can be formed in the production process [5].

• Weldings: In welding process, a mandatory inspection using X-ray testing is required in order

to detect defects (porosity, inclusion, lack of fusion or penetration and cracks). X-ray images

of welds are widely used for the detecting those defects in the petroleum, chemical, nuclear,

naval, aeronautics and civil construction industries [6].

We observe, there are some application areas, like castings inspection, where automated systems

are very effective. Additionally, there are certain application areas, like weldings and cargos,

where the inspection is semi-automatic; and there is some research in food science where food

quality is beginning to be characterized using X-ray imaging. Finally, there are application

areas, like baggage screening, where human inspection is still used, although the effectiveness

is around 90% (in best-case) [7–9].
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In order to aid human inspection tasks, baggage screening algorithms have been mainly develo-

ped to solve image segmentation problems using single views. Multiple view analysis, however,

can be exploited in the inspection of complex objects where the detection is extremely difficult

with only one viewpoint, because the target object may be occluded or its projection is intricate

as shown in Fig. 1.

(a) (b)

Figure 1: Two radioscopic views of the same inspection object (a pencil case), where the detection of the target
object (a razor blade) is; a) impossible, and b) possible.

In this sense, multiple view analysis can be a powerful option for examining complex objects

where uncertainty can lead to misinterpretation. Multiple view analysis offers advantages not

only in 3D interpretation. Two or more views of the same object taken from different viewpoints

can be used to confirm and improve the diagnostic done by analyzing only one image. In the last

years, there are two main strategies developed for X-ray testing with multiple views: The first

strategy is based on the tracking of potential objects of interest across an X-ray image sequence.

The key idea can be summarized as follows: i) potential objects of interest are segmented in each

view of the sequence using an application dependent method that analyzes 2D features in each

single view ensuring the detection of the target object (not necessarily in all views) and allowing

false detections, ii) the potential regions are tracked across the sequence based on similarity and

geometrical constraints (according to multiple view geometry [10]) eliminating those potential

regions that cannot be tracked, and iii) the tracked regions are analyzed including those views

where the segmentation fails (the positions can be predicted by reprojection [10]). This strategy

was developed for aluminum castings in [11] using an off-line calibration approach [12] for
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the geometrical model, and an uncalibrated model [13]. Additionally, this strategy was used

for other complex objects using a structure model obtained from the views [14]. The second

strategy is based on a virtual 3D scanning of the target object. Despite existence techniques for

linking information between different views, there are still relevant challenges to solve problems

such as data association, correlation establishment, and occlusions. For this reason, in [15], the

classical 2D sliding-window scheme (see for example an application in inspection of welds [16])

was changed to a 3D sliding-box approach. The key idea of this approach is to analyze –for each

3D position of a sliding-box– only the portion of the images where the sliding-box is projected.

Again, the strategy was tested in aluminum castings.

We observe in these works that the automated analysis in multiple views can achieve high detec-

tion rates because there is no substantial overlap effect, however, there is an initial requirement

of a considerable high number of images, many of them are certainly unnecessary. Additionally,

in all cases the estimation of a complex geometrical model is required.

For these reasons, we developed an X-ray testing framework for the active multiple view inspec-

tion of complex objects that avoids the mentioned disadvantages. The key idea of our method is

to adapt automatically the viewpoint of the X-ray images in order to project the target object in

poses where the detection performance should be higher. Thus, analyzing a first view, we can

automatically search a second, third and even fourth view, to confirm and improve the analysis

of only one image. In our proposal, we incorporate some ideas of best view and view planning

where there are a variety of published works in the areas of recognition and 3D reconstruction

(see for example [17, 18]), however, to best our knowledge there are no publications on X-ray

inspection using these ideas.

In this paper we present: the proposed approach (Section 2), the results obtained in several

experiments (Section 3), and some concluding remarks and suggestions for future research

(Section 4).

2 Proposed Approach

In our approach, a target object, i.e., the object of interest to be detected, may be located inside

of a container object. Usually, there are many objects inside of a container object, and only
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a few of them –if any– are target objects. For this reason, we say that the whole object to be

inspected is a complex inspection object. In order to test our framework, we used –without

loss of generality– razor blades (target objects) inside of different cases (container objects), as

illustrated in Fig. 1. This inspection object is complex enough to perform our experiments. Ad-

ditionally, a razor blade has the advantage of being an object with interesting characteristics to

address: thinness, low X-ray absorption coefficient, symmetry in all quadrants, easy portability

and dangerous (in baggage screening at airports for example).

2.1 General framework

The general framework attempts to find a good view of the inspection object, i.e., an image in

which a target object should be viewed from a good pose that ensures its detection. The good

poses of the target object correspond to those ones from them the acquired view should have a

high probability of detection. In our experiments, the good poses of a razor blade correspond

to the frontal views. Thus, the key idea is to rotate and/or translate the inspection object from

an initial position to a new one in which the detection probability of the target object should

be higher. Clearly, if the initial position corresponds to a good view, no more positions will

be required, in these cases the inspection is performed with only one X-ray image avoiding the

analysis of more images.

The proposed algorithm consists of two parts (A and B), as is illustrated in Fig. 2: In part A, an

arbitrary initial position of the inspection object is chosen and an X-ray image is acquired. In

the detection step, a target object is searched, and if a potential target object is detected, its pose

is estimated. If the estimated pose corresponds to one of the good poses then the inspection

is finished detecting a target object, else the inspection object should be moved –using the

estimated pose– so that one of the good poses of the target object is expected. This process

is interrupted after Cmax times in order to avoid looping. On the other hand, in part B, if no

potential target object is found –in the detection step– then the object is arbitrarily moved to a

new position very different from the first one, repeating the detection step. The last situation

can repeated until Dmax times in order to ensure the inspection from all relevant viewpoints. In

our experiments, Cmax = 4 and Dmax = 3.
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Figure 2: Framework for active inspection with X-rays.

This proposed framework is general and easily adaptable, however, the designed algorithms for

detection and pose estimation are application dependent. As mentioned above, in our experi-

ments we use a razor blade as target object. For this reason, the details of our method explained

below are for this particular application.
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2.2 Detection of potential target objects

An application dependent algorithm must be defined to detect automatically potential target

objects in a single test image. The objects detected in this step are called potential target

objects. As mentioned above, in order to test our framework, we developed an algorithm that is

able to detect razor blades. In this section, the algorithm will be explained in further details.

The algorithm is based on a well known technique used by the computer vision community

called SIFT (Scale Invariant Feature Transform) [19]. SIFT is able to detect and extract –in

certain keypoints of an image– local feature descriptors that are very robust against noise and

changes in scale, rotation, viewpoint and contrast. A SIFT descriptor is typically a vector with

128 elements computed from 16 histograms of gradients in 8 directions in a neighborhood of

the keypoint (see more details in [19]). Thus, the matching between keypoints of two different

images of the same object is efficiently performed by comparing their SIFT descriptors, i.e., by

finding the minimal Euclidean distance between the descriptors.

In our approach, we use a SIFT description of the target object in all feasible poses by rotating

two axes in nine steps as shown in Fig. 3. All extracted descriptors are stored in an arrange P,

where pj means the j-th descriptor, for j = 1...m. Each descriptor pj has a corresponding pose

rj . In our example, rj ∈ [1, 81] for 9× 9 poses.

In the detection step, all SIFT descriptors of the test image of the inspection object are extracted

and stored in an arrange Q, where qi means the i-th descriptor of the test image for i = 1...n.

Now, all duplets (qi,pj) that fulfill the condition ‖qi − pj‖ < θE for i = 1...n and j = 1...m

are selected, where θE is a minimum distance threshold, and ‖qi − pj‖ means the Euclidean

distance between both vectors. Afterwards, for each selected descriptors the corresponding pose

rj is obtained. The selected descriptors and their corresponding poses will be stored in Q and

R respectively. Thus, we have i)Q: all keypoints of the test image that have been matched with

keypoints of the target object, and ii)R: the corresponding poses for the selected keypoints Q.

The detection is performed in the following two steps: i) Clustering: inQ, we find all keypoints

of the same pose that are close to each other in the test image. Thus, we define subwindowsWB

that have at least θB keypoints of the same pose (see blue squares in 4b). In our experiments,

we set the size ofWB equal to 80×80 pixels, and θB = 3. ii) Merging: all subwindowsWB that
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(a) (b)

Figure 3: Description of the target object: the razor blade is located and irradiated in 81 different poses (α =
0, 10, ...800, and β = 0, 10, ...800), from their X-ray images SIFT descriptors are extracted (see red keypoints).
The good poses are the frontal views defined by 0 ≤ α ≤ 30 and 0 ≤ β ≤ 30, i.e., the poses 1, 2, 3, 4, 10, 11, 12,
13, 19, 20, 21, 22, 28, 29, 30 and 31 (see large red square at the bottom left).

are connected or overlapped, will be merged in a new larger subwindowWG (see green squares

in Fig. 4b and 4c). The subwindow that encloses the highest number of keypoints of the same

pose will be selected if this number is equal or greater than θG, ensuring at least θG descriptors

of the same pose in the selected window (see red square in Fig. 4d). In our experiments, we

set θG = 8. The selected subwindow will be calledWS and it corresponds to a potential target

object. If no subwindow fulfills this condition, then no potential target object is detected.

2.3 Pose estimation

Clearly, the estimated pose of the detected potential target object will be the corresponding

pose of the selected subwindowWS (see Section 2.2 and label in Fig. 4d). If this pose is one

of the good poses then the algorithm will be finished detecting a target object. In our example,
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the set of good poses corresponds to frontal views of the razor blade as shown in Fig. 3. If the

estimated pose does not belong to the set of good poses, or no potential target object is detected,

then the inspection object will be moved to a new position attempting to get a good pose of the

target object. The estimation of the next best position, called next best view in active vision, will

be explained in following.

(a) (b) (c) (d)

Figure 4: Detection and pose estimation: a) Test image. b) Extracted SIFT keypoints (red points) and clusters
of keypoints with the same pose (blue subwindowsWB). b) and c) Merged clusters (green subwindowsWG). d)
Selected potential target object (red subwindowWS) and its corresponding pose ‘70’ (compare to pose 70 in Fig.
3).

(a) (b)

Figure 5: Manipulation systems: a) Semi-automatic system: axis X can be controlled using a stepper motor,
whereas axes Y and Z are manually rotated. b) Robotic arm: only axis X can be rotated by the manipulator.
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2.4 Estimation of next best position

As outlined in previous subsections, our framework attempts to move the inspection object so

that a good pose of the target object should be viewed. In this Section, we explain in further

details, how this next best position is estimated.

As shown in Fig. 2, there are two different scenarios by estimating the next best position.

Scenario A: when a potential target object was detected in previous step. It means that the pose

of the detected potential target object does not correspond to a good pose. Scenario B: when

a potential target object was not detected in previous step. It happens when there is no target

object inside of the inspection object, or when the pose of a existing target object is so intricate

that the detection may fail, as shown in Fig. 1a. Scenario B is easily dealt with by moving

the inspection object to a very different position. In our case, we rotate the inspection object

around an axis perpendicular to the optical axis of the X-ray projection in ωX = −40◦. This

value was heuristically determined by studying Fig. 3. Thus, the target object -if any- could be

quickly aligned to the region of the good poses, as shown in Fig. 1b. On the other hand, for

scenario A, the next best position will depend on the estimated (actual) pose of the potential

detected target object. Generally, the problem here is that the manipulation system can rotate

only the axes of the inspection object and these axes do not correspond to the axes of the target

object. It would be very simple to obtain a good pose of our target object if the manipulation

system could rotate the target object around α or β axes of the razor blade (see Fig. 3). For this

reason, we present in this paper two different manipulation systems as shown in Fig. 5: a) a

semi-automatic system (with three rotation axes (X, Y, Z)), and b) a robotic arm with only one

rotation axis (X). In both cases, axis Z corresponds to the optical axis of the X-ray projection.

In following we explain how this problem can be solved using these constraints.

In order to move the manipulation system to a position that corresponds to a good pose of the

target object, first, the Z axis is rotated ωZ = γ –if it is possible– so that the major axis of the

razor blade is parallel to the X axis, and afterwards the X axis is rotated ωX = −α, where α

is the angle of the estimated pose as shown in Fig. 3, e.g., for pose labeled as ‘70’ the rotation

will be ωX = −60◦. In the semi-automatic manipulation system both rotations are possible,

whereas in the robotic arm only the last rotation is possible.
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In order to estimate the orientation of the razor blade, an ellipse will be fitted to the keypoints

of the estimated pose contained in the selected subwindowWS as shown in Fig. 6. The angle

between the major axis of the ellipse and the horizontal X axis will be denoted by φ. Thus, if

the angle φ ≥ 90◦ then the rotation of Z axis will be γ = 180◦ − φ, and if the angle φ < 90◦

then γ = −φ (see Fig. 6).

Using this approach, the attempt is made to obtain a new position of the inspection object where

the pose of the target object should be a good pose or close to a good pose. It is worth noting

that due to perspective, razor blade X-ray images acquired from four different poses (±α,±β)

are very similar. For this reason the pose estimation, and therefore the estimation of the next

best position, may fail. In these cases, the next view may not be a good view and thus, no target

object will be detected or no good pose will be obtained. There are two alternatives to deal

with this erroneously estimated position: i) to go back and then to correct the pose estimation,

and ii) to try to obtain a new next best position from this erroneous position. From a practical

standpoint, since option i) can be repeated until three times, we decided on option ii). Our

experiments validated this option.

Theoretically, in case of inspecting with a manipulation system with only one rotation axis

(case of the robotic arm), the detection will fail if the razor blade is placed perpendicular to

rotation axis, because by rotating the target object it will never achieve a good pose. In order

to overcome this problem, the object must be inspected again from another viewpoint. This can

be performed by leaving the object on a table and taking it again from another pose.
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(a) (b)

Figure 6: rotation around the axis Z: a) when φ ≥ 90◦, b) when φ < 90◦.

3 Experimental Results

In the experiments, we used a digital X-rays detector (Canon, model CXDI-50G), X-rays emit-

ter tube (Poskom, model PXM-20BT ) and lead security cabinet to isolate inspection environ-

ment (see Fig. 7). The manipulation systems were a clamping mechanism semi-automatic

(Gyroscope), and a robotic arm (Neuronics, model Katana 6M), as shown in Fig. 5. The nine

inspection objects (a,b,c,d,e,f,g,h,i) are illustrated in Fig. 8. Inside of all inspection objects was

a razor blade. Seven objects (a,b,c,d,e,f,g) were inspected using the semi-automatic system,

whereas six objects (a,c,d,g,h,i) were inspected using the robotic arm. Each object was tested

starting from 10 arbitrary initial positions, yielding (7 + 6)× 10 = 130 experiments.
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(a) (b) (c)

Figure 7: X-ray imaging system: a) X-rays detector (flat panel), b) X-rays source, and c) lead cabinet with source
and flat pannel.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 8: Inspection objects.

3.1 Description of the target object

As mentioned in Section 2.2, the target object –a razor blade– was described from 81 different

poses by rotating α and β axes (Fig. 3). The razor blade was located in the center of a sphere

of EPS (Expanded PolyStyrene) as shown in Fig. 9a. We used a sphere of EPS, due to its low

X-ray absorption coefficient. The Fig. 9b illustrates the description of a razor blade using SIFT

descriptors for pose ‘1’ of Fig. 3. In the experiments, we used the SIFT implementation of [20].
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(a) (b)

Figure 9: Characterization of a razor blade, a) sphere of EPS (Expanded PolyStyrene), and b) razor blade with
two SIFT representations: magnitude-orientation, and keypoints.

3.2 Inspection experiments

Every object was inspected 10 times where the first image of each inspection test was acquired

in a random position. The obtained results are summarized in Table 1 for the semi-automatic

system and Table 2 for the robotic arm. As shown in the tables, sometimes only the first image

was enough to detect the target object, however, in other cases 2, 3 or 4 images were necessary.

The algorithm for detection of potential target objects failed in some cases (see ND for no-

detection), however, in many of these cases the target object could be detected in the next

view(s). Thus, in these cases, our approach was able to overcome intricate views and some

occlusions. Nevertheless, in certain cases our approach could not detect any target object due

to severe occlusion and unfavorable initial positions.

Figures 10, 11, 12 and 13 illustrate the inspection process for four different inspection objects.

We can see the ability of our approach to find the target object looking for good views even with

partial occlusions. Since the clamping system of the semi-automatic system has a high X-ray

absorption coefficient, some regions of the test image where so dark that caused false detections

(FP). On the other hand, since the robotic arm could move the inspection object using only one

degree of freedom (rotation of X axis), the whole inspection in certain cases was performed in

more views than using the semi-automatic system that was able to rotate the Z axis as well.

In order to evaluate the performance of our approach, we calculated precision and recall rates

from Tables 1 and 2. They are defined as precision = TP/(TP + FP) and recall = TP/P, where

TP is the total number of true positives (detected razor blades), FP is the total number of false

positives (false detections) and P is the total number of razor blades (one per experiment).

14



Thus, the semi-automatic system yielded a rate of recall = 88.6% and precision = 92.5%, and

the robotic arm achieved rates of recall = 88.3% and precision = 91.4%.

The framework was implemented using MATLAB. Each single view was processed in average

in 10 seconds on an iMac OS X 10.6.8, processor 3.06GHz Intel Core 2 Duo, 4GB RAM

memory.

Table 1: Inspection sequences and performance indicators with semi-automatic system.

Object Sequence Pose Rotation Pose Rotation Pose Rotation Pose Performance
X Z X Z X Z TP FP

1 2 – – – – – – – – – 1 0
2 2 – – – – – – – – – 1 0
3 ND -40◦ – 2 – – – – – – 1 0
4 ND -40◦ – 28 – – – – – – 1 0

a 5 2 – – – – – – – – – 1 0
6 ND -40◦ – ND -40◦ – 28 – – – 1 0
7 2 – – – – – – – – – 1 0
8 ND -40◦ – 2 – – – – – – 1 0
9 2FP – – – – – – – – – 0 1

10 ND -40◦ – ND -40◦ – 2 – – – 1 0
1 1 – – – – – – – – – 1 0
2 3 – – – – – – – – – 1 0
3 ND -40◦ – 10 – – – – – – 1 0
4 65 -10◦ -35◦ 56 -10◦ -17◦ 55 – – – 1 0

b 5 59 -40◦ -31◦ 2FP – – – – – – 0 1
6 60 -50◦ -69◦ 2 – – – – – – 1 0
7 16 -60◦ 0◦ 10 – – – – – – 1 0
8 7 -60◦ 20◦ 19 – – – – – – 1 0
9 8 -70◦ 23◦ 10 – – – – – – 1 0

10 ND -40◦ – 23 -40◦ 24◦ 1 – – – 1 0
1 19 – – – – – – – – – 1 0
2 ND -40◦ – 28 – – – – – – 1 0
3 ND -40◦ – ND -40◦ – 64 – – – 1 0
4 ND -40◦ – ND -40◦ – ND – – – 0 0

c 5 ND -40◦ – ND -40◦ – 3 – – – 1 0
6 ND -40◦ – 2FP – – – – – – 0 1
7 10 – – – – – – – – – 1 0
8 ND -40◦ – ND -40◦ – 37 – – – 1 0
9 ND -40◦ – ND -40◦ – 19 – – – 1 0

10 ND -40◦ – ND -40◦ – 5 40◦ -85◦ 21 1 0
1 50 -40◦ 9◦ 28 – – – – – – 1 0
2 39 -20◦ -77◦ 51 -50◦ 43◦ ND -40◦ – 3 1 0
3 2FP – – – – – – – – – 0 1
4 28 – – – – – – – – – 1 0

d 5 69 -50◦ -83◦ 38 -10◦ -77◦ 2 – – – 1 0
6 4 – – – – – – – – – 1 0
7 6 -50◦ 27◦ ND -40◦ – 32 -40◦ 15◦ 20 1 0
8 30 – – – – – – – – – 1 0
9 48 -20◦ -58◦ 37 – – – – – – 1 0

10 50 -40◦ -44◦ 2 – – – – – – 1 0
1 31 – – – – – – – – – 1 0
2 ND -40◦ – ND -40◦ – ND – – – 0 0
3 77 -40◦ -41◦ 30 – – – – – – 1 0
4 ND -40◦ – ND -40◦ – 46 – – – 1 0

e 5 13 – – – – – – – – – 1 0
6 ND -40◦ – 2 – – – – – – 1 0
7 ND -40◦ – 46 – – – – – – 1 0
8 ND -40◦ – ND -40◦ – 2 – – – 1 0
6 ND -40◦ – 2 – – – – – – 1 0

10 59 -40◦ 83◦ ND -40◦ – 2 – – – 1 0
1 ND -40◦ – 2 – – – – – – 1 0
2 7 -60◦ -4◦ 7 -60◦ -8◦ ND -40◦ – 2 1 0
3 ND -40◦ – ND -40◦ – ND – – – 0 0
4 2 – – – – – – – – – 1 0

f 5 ND -40◦ – 2 – – – – – – 1 0
6 ND -40◦ – ND -40◦ – 2 – – – 1 0
7 ND -40◦ – 37 – – – – – – 1 0
8 16 -60◦ -1◦ 2 – – – – – – 1 0
9 2FP – – – – – – – – – 0 1

10 ND -40◦ – 2 – – – – – – 1 0
1 2 – – – – – – – – – 1 0
2 41 -40◦ 17◦ 19 – – – – – – 1 0
3 ND -40◦ – 66 -20◦ 68◦ 20 – – – 1 0
4 42 -50◦ 3◦ 19 – – – – – – 1 0

g 5 5 -40◦ -64◦ 19 – – – – – – 1 0
6 ND -40◦ – 64 – – – – – – 1 0
7 41 -40◦ 4◦ 20 – – – – – – 1 0
8 22 – – – – – – – – – 1 0
9 24 -50◦ 10◦ 19 – – – – – – 1 0

10 48 -20◦ -4◦ 38 -10◦ -19◦ 46 – – – 1 0
TOTAL: 62 5

recall = TP/P: 88,6%
precision = TP/(TP + FP): 92,5%

ND: No-Detection, TP : True Positive, FP : False Positive, P : total of experiments.
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Table 2: Inspection sequences and performance indicators with robotic arm.

Object Sequence Pose Rotation Pose Rotation Pose Rotation Pose Performance
X X X TP FP

1 2 – – – – – – 1 0
2 ND -40◦ ND -40◦ 4 – – 1 0
3 ND -40◦ 5 -40◦ 2 – – 1 0
4 ND -40◦ 2 – – – – 1 0

a 5 ND -40◦ 2 – – – – 1 0
6 11 – – – – – – 1 0
7 ND -40◦ 14 -40◦ 2 – – 1 0
8 ND -40◦ 19 – – – – 1 0
9 ND -40◦ ND -40◦ 1 – – 1 0
10 24 -50◦ 2FP – – – – 0 1
1 ND -40◦ 4 – – – – 1 0
2 5 -40◦ 1 – – – – 1 0
3 ND -40◦ ND -40◦ 4 – – 1 0
4 ND -40◦ 4 – – – – 1 0

c 5 ND -40◦ 10 – – – – 1 0
6 46 – – – – – – 1 0
7 ND -40◦ 47 -10◦ 38 -10◦ 30 1 0
8 55 – – – – – – 1 0
9 52FP – – – – – – 0 1
10 48 -20◦ 31 – – – – 1 0
1 28 – – – – – – 1 0
2 ND -40◦ ND -40◦ 29 – – 1 0
3 3 – – – – – – 1 0
4 ND -40◦ 37 – – – – 1 0

d 5 ND -40◦ 64 – – – – 1 0
6 55 – – – – – – 1 0
7 ND -40◦ 67 -30◦ 61 -60◦ ND 0 0
8 37 – – – – – – 1 0
9 68 -40◦ ND -40◦ 2FP – – 0 1
10 ND -40◦ 55 – – – – 1 0
1 28 – – – – – – 1 0
2 20 – – – – – – 1 0
3 55 – – – – – – 1 0
4 46 – – – – – – 1 0

g 5 65 -10◦ 56 -10◦ 46 – – 1 0
6 65 -10◦ 57 -20◦ 39 -20◦ 20 1 0
7 ND -40◦ 46 – – – – 1 0
8 ND -40◦ ND -40◦ 10 – – 1 0
9 5 -40◦ 1 – – – – 1 0
10 ND -40◦ 52 -60◦ 3 – – 1 0
1 ND -40◦ 6 -50◦ 1 – – 1 0
2 48 -20◦ 29 – – – – 1 0
3 5 -40◦ 2 – – – – 1 0
4 ND -40◦ 3 – – – – 1 0

h 5 55 – – – – – – 1 0
6 ND -40◦ 19 – – – – 1 0
7 2FP – – – – – – 0 1
8 ND -40◦ 6 -50◦ 11 – – 1 0
9 59 -40◦ 21 – – – – 1 0
10 6 -50◦ 10 – – – – 1 0
1 19 – – – – – – 1 0
2 ND -40◦ 48 -20◦ 29 – – 1 0
3 ND -40◦ ND -40◦ 37 – – 1 0
4 55 – – – – – – 1 0

i 5 ND -40◦ 46 – – – – 1 0
6 ND -40◦ 2FP – – – – 0 1
7 ND -40◦ ND -40◦ ND – – 0 0
8 ND -40◦ ND -40◦ 2 – – 1 0
9 55 – – – – – – 1 0
10 41 -40◦ 56 -10◦ 55 – – 1 0

TOTAL: 53 5
recall = TP/P: 88,3%

precision = TP/(TP + FP): 91,4%
ND: No-Detection, TP : True Positive, FP : False Positive, P : total of experiments.
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Figure 10: Inspection of object b, sequence 10 with semi-automatic system (see Table 1).
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Figure 11: Inspection of object d, sequence 5 with semi-automatic system (see Table 1).
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Figure 12: Inspection of object c, sequence 7 with robotic arm (see Table 2).

19



Figure 13: Inspection of object i, sequence 9 with robotic arm (see Table 2).

4 Conclusions

In this paper, we proposed a radioscopic multiple view framework which is able to inspect

complex objects using active vision. The framework we proposed was exemplified by detection

of a razor blade, which in places such as airports and customs centers is considered a dangerous

object. Although the detection of a razor blade may seem simple, conceptual and experimental

evidence showed us the complexity of solve this problem due to the symmetry in all quadrants,
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thinness and smallness, and low X-ray absorption coefficient.

Using a robotic arm and a semi-automatic manipulator system, the robustness and reliability of

the method have been verified in the automated detection of razor blades located inside of nine

different objects showing promising preliminary results: in 130 experiments we were able to

detect 115 times the razor blade with 10 false alarms, achieving recall of 89% and precision of

92%. Comparing our results with human inspection processes that can achieve a around than

90% in baggage screening at airports [7–9], we found that our approach is promising.

As feature work, we will implement this method in more complex scenarios with more occlu-

sion and other target objects. Additionally, we will incorporate a calibrated model of the X-ray

projection in order to manipulate the inspection object with more accuracy.
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