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Abstract—X-ray testing is playing an increasingly important
role in food quality assurance. In the production of fish fillets,
however, fish bone detection is performed by human operators
using their sense of touch and vision which can lead to
misclassification. In countries where fish is often consumed, fish
bones are some of the most frequently ingested foreign bodies
encountered in foods. Effective detection of fish bones in the
quality control process would help avoid this problem. For this
reason, we developed an X-ray machine vision approach to au-
tomatically detect fish bones in fish fillets. This paper describes
our approach and the corresponding validation experiments
with salmon fillets. The approach consists of six steps: 1) A
digital X-ray image is taken of the fish fillet being tested. 2) The
X-ray image is filtered and enhanced to facilitate the detection
of fish bones. 3) Potential fish bones in the image are segmented
using band pass filtering, thresholding and morphological
techniques. 4) Intensity features of the enhanced X-ray image
are extracted from small detection windows that are defined
in those regions where potential fish bones were segmented.
5) A classifier is used to discriminate between ‘bones’ and
‘no-bones’ classes in the detection windows. 6) Finally, fish
bones in the X-ray image are isolated using morphological
operations applied on the corresponding segments classified as
‘bones’. In the experiments we used a high resolution flat panel
detector with the capacity to capture up to a 6 million pixel
digital X-ray image. In the training phase, we analyzed 20
representative salmon fillets, 7700 detection windows (10×10
pixels) and 279 intensity features. Cross validation yielded a
detection performance of 95% using a support vector machine
classifier with only 24 selected features. We believe that the
proposed approach opens new possibilities in the field of
automated visual inspection of salmon and other similar fish.

Keywords-X-ray imaging; automated visual inspection; qual-
ity control; fish inspection.

I. INTRODUCTION

In order to ensure food safety, several applications using

X-ray testing have been developed for the industry [1]. The

inherent difficulties in detecting defects, foreign objects and

contaminants in food products have limited the use of X-

ray to the packaged foods sector [2]. However, the necessity

for NDT has motivated a considerable research effort in

this field spanning many decades [3]. Important advances

include: bone detection in poultry production [4], identifica-

tion of insect infestation in citrus [5], detection of codling

moth larvae in apples [3], fruit quality inspection like split-

pits, water content distribution and internal structure [6],

and detection of the granary weevil’s larval stages in wheat

kernels [7].

In the automated detection of fish bones, often called pin

bones, there are few published papers: Andersen mentioned

the basic components of a processing line to remove fish

bones using a pin bone detection unit [8], however, there

is no documentation for how the detection works. Han

and Shi developed an approach with 85% effectiveness

in fish bone detection based on particle swarm clustering
in regions of interest obtained by thresholding and mor-

phological operations [9]. Lorenc et al. elaborated on a

general algorithm based on statistical features that can be

used to detect fish bones, in which small vertical fragments

are segmented in gray value images containing a varying

undefined background, however, validation experiments are

not reported [10]. Thielemann et al. presented an interesting

method based on texture analysis of the surface image (not

an X-ray image) to predict the positions where fish bones

could be present in the fillet [11]. In the literature review, we

observed the lack of an approach that could automatically

detect fish bones effectively. That is most likely due to

the fact that X-ray images of fish fillets with fish bones

are very similar to those images where the texture of the

surrounding fish fillet is present [8]. As we can see, X-

ray testing is playing an increasingly important role in food

quality assurance. However, fish bone detection in fish fillets

is mainly performed by human operators using touch and

vision senses which can certainly lead to misclassification

(Fig. 1). In countries where fish is often consumed, fish

bones are one of the most frequently ingested foreign bodies

Figure 1. Typical manual operation in a processing line using pliers to
remove fish bones in salmon fillets.
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encountered in foods [12], so effective fish bone detection

in quality control would assist in avoiding this problem. For

this reason, we developed an X-ray machine vision approach

to detect fish bones in fish fillets automatically with high

performance. This paper describes our approach and the

corresponding validation experiments with salmon fillets.

The rest of the paper is organized as follows: In Section II,

the proposed X-ray machine vision approach is explained.

In Section III, the results obtained in several experiments

on salmon fillets are shown. Finally, in Section IV some

concluding remarks are given.

II. DETECTION OF FISH BONES

The key idea of our work is to use a machine vision

methodology (Fig. 2), to automatically detect fish bones in

fish fillets. The steps involved in this methodology are [13]:

1. Image acquisition: An X-ray digital image of the fish

fillet being tested is taken and stored in the computer.

2. Pre-processing: The digital image is improved in order

to enhance the details.

3. Segmentation: Potential fish bones are found and isolated

from the scene’s background.

4. Feature extraction/selection: Significant features of the

potential fish bones and their surroundings are quantified.

5. Classification: The extracted features are interpreted

automatically using a priori knowledge of the fish bones

in order to separate potential fish bones into detected fish

bones or false alarms.

6. Post-processing: Using morphological approaches the

fish bones are detected and isolated in the X-ray image.

A. Image Acquisition

The X-ray source generates X-ray photons which irradiate

the fish fillet being inspected. The fish fillet absorbs energy

Figure 2. Machine vision schema used to automatically detect fish bones
in fish fillets.

according to the principle of differential absorption [14].

Thus, internal elements of the fillet (such as fish bones,

regular structures of the muscles, discontinuities, or foreign

objects) modify the expected radiation received by the X-

ray detector [15]. We used a flat panel detector that forms

the digital X-ray image in three steps [16]: i) A scintillator

sheet absorbs the X-ray photons and converts them into

light photons, ii) an amorphous silicon photodiode array

converts the light photons into electronic charges, and iii)
each photodiode is read by an analog-to-digital converter

(ADC) forming each pixel of the digital X-ray image. In

our experiments, as shown in Fig. 3, we used:

1. X-ray Source: A battery powered X-ray system Poskom

XM-20BT (tube focal spot: 1.2mm, max. output: 100kV,

20mA).

2. Flat Panel Detector: A digital radiography system

Cannon CXDI-50G (detection size: 35×43cm2, image size:

2.208×2.688 pixels (5.93 million pixels), pixel size: 160

microns, grayscale: 4.096 (12-bits) gray value).

The X-ray source, the fish fillet exposed to X-rays, and

the flat panel detector are enclosed in a lead cabinet that

provides enough radiation attenuation and prevents access

to the X-ray beam. The voltage and composite factor of the

X-ray source were set to 40kV and 21mAs respectively by

maximizing the contrast and minimizing the noise of more

than twenty X-ray images of salmon fillets.

B. Pre-processing and Segmentation

The fish bones are only present in certain space frequen-

cies of the spectrum: they are not too thin (minimal 0.5mm)

nor too thick (maximal 2mm). The segmentation of potential

fish bones is based on a band pass filter to enhance the fish

bones with respect to their surroundings as shown in 4. Our

approach to detect potential fish bones has four steps:

1. Enhancement: The original X-ray image X (Fig. (4b)

is enhanced linearly by modifying the original histogram

in order to increase contrast [13]: We obtain an enhanced

image Y = aX + b.

3. Band pass filtering: The enhanced image Y is filtered

using a radial symmetric 17×17 pixels mask H (Fig. 4a).

Mask H was estimated from twenty X-ray images by

minimizing the error rate proposed by Canny [17] applied to

fish bones (all fish bones should be found and there should

be no false alarms). The filtered image Z = Y ∗ H is

obtained (see Fig. 4c).

3. Thresholding: Those pixels in Z that have gray values

greater than a certain threshold θ are marked in a binary

image B. The threshold is defined to ensure that all fish

bones are detected, i.e., false alarms are allowed in this step.

4. Removal of small objects: All connected pixels in Z
containing fewer than A pixels are removed as shown in

Fig. 4d.
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Figure 3. X-ray imaging system: fish fillets are irradiated by X-rays and the flat panel detector captures a high resolution X-ray image in which the fish
bones are detectable.

Figure 4. Segmentation of potential fish bones: a) Convolution mask H in space domain, b) original X-ray image X of a salmon fillet, c) filtered image
Z, d) potential fish bones after thresholding and removing objects deemed too small.

C. Feature extraction and selection

The segmented potential fish bones are divided into

small 10×10 pixels windows called detection windows. In a

training phase, using a priori knowledge of the fish bones,

the detection windows are manually labeled as one of two

classes: ‘bones’ and ‘no-bones’. The first class corresponds

to those regions where the potential fish bones are indeed

fish bones. Alternatively, the second class corresponds to

false alarms. Intensity features of the enhanced X-ray image

Y are extracted for both classes. Features extracted from

each area of an X-ray image region are divided into four

groups as shown in Table I:

1. Standard: Simple intensity information related to the

mean, standard deviation of the intensity in the region, mean

first derivative in the boundary, and second derivative in the

region [18].

2. Statistical textures: Texture information extracted from

the distribution of the intensity values based on the Haralick

approach [19]. They are computed utilizing co-occurrence
matrices that represent second order texture information (the

joint probability distribution of intensity pairs of neighboring

pixels in the image), where mean and range of the following

variables were measured: Angular Second Moment, Con-

trast, Correlation, Sum of squares, Inverse Difference Mo-

ment, Sum Average, Sum Entropy, Sum Variance, Entropy,

Difference Variance, Difference Entropy, Information Mea-

sures of Correlation, and Maximal Correlation Coefficient.

3. Filter banks: Texture information extracted from im-

age transformations like Discrete Fourier Transform (DFT),

Discrete Cosine Transform (DCT) [13], and Gabor fea-

tures based on 2D Gabor functions, i.e., Gaussian-shaped

bandpass filters, with dyadic treatment of the radial spatial

frequency range and multiple orientations, which represent

an appropriate choice for tasks requiring simultaneous mea-

surement in both space and frequency domains (usually 8

scale and 8 orientations) [20].

4. Local binary patterns: Texture information extracted

from occurrence histogram of local binary patterns (LBP)

computed from the relationship between each pixel intensity

value with its eight neighbors. The features are the frequen-

cies of each one of the histogram’s 59 bins. LBP is very

robust in terms of gray-scale and rotation variations [21].
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Table I
EXTRACTED FEATURES

Group Name and references

1. Standard Mean Intensity, Standard deviation Intensity, Mean
Laplacian, Mean Gradient, etc. [18].

2. Statistical textures Tx(k, p) (mean/range) for k=1. Angular Second
Moment 2. Contrast, Correlation, 4. Sum of squares,
5. Inverse Difference Moment, 6. Sum Average,
7. Sum Entropy, 8. Sum Variance, 9. Entropy,
10. Difference Variance, 11. Difference Entropy,
12.,13. Information Measures of Correlation,
14. Maximal Correlation Coefficient, and p=1,...5
pixels [19].

3. Filter Banks DFT (1,2;1,2) and DCT (1,2;1,2) [13].
Gabor (1,...,8;1,...8), max(Gabor), min(Gabor),
Gabor-J [20].

4. Local Binary Patterns LBP (1,...,59) [21].

In our experiments, n = 279 features are extracted from

each detection window. Afterwards, the features must be

selected in order to decide on the relevant features for the

two defined classes.

The n extracted features for sample i are arranged in an

n-vector: fi = [fi1...fin] that corresponds to a point in the

n-dimensional measurement feature space. The features are

normalized yielding a N ×n matrix W which elements are

defined as:

wij =
fij − μj

σj
(1)

for i = 1, ..., N and j = 1, ..., n, where fij denotes the j-th

feature of the i-th feature vector, N is the number of samples

and μj and σj are the mean and standard deviation of the

j-th feature. Thus, the normalized features have zero mean

and a standard deviation equal to one. Those high correlated

features can be eliminated because they do not provide

relevant information about the food evaluation quality.

In feature selection, a subset of m features (m < n)
that leads to the smallest classification error is selected.

The selected m features are arranged in a new m-vector

si = [si1...sim]. This can be understood as a matrix S with

N ×m elements obtained from m selected columns of the

large set of normalized features W.

The features can be selected using several state-of-art

algorithms documented in literature like Forward Orthog-

onal Search [22], Least Square Estimation [23], Ranking

by Class Separability Criteria [24] and Combination with

Principal Components [25] among others. However, in our

experiments the best performance was achieved using the

well-known Sequential Forward Selection (SFS) algorithm

[26]. This method selects the best single feature and then

adds one feature at a time that, in combination with the

selected features, maximizes classification performance. The

iteration is halted once no considerable improvement in the

performance is achieved by adding a new feature. By evalu-

ating selection performance we ensure: i) a small intraclass

variation and ii) a large interclass variation in the space of

the selected features. For the first and second conditions

the intraclass-covariance Cb and interclass-covariance Cw

of the selected features S are used respectively. Selection

performance can be evaluated using:

J(S) = trace
(
C−1

w Cb

)
, (2)

where ‘trace’ means the the sum of the diagonal elements.

The larger the objective function J , the higher the selection

performance.

D. Classification and Validation

A classifier decides whether the detection windows are

‘bones’ or ‘no-bones’. We tested several classifiers, such as

statistical or those based on neural networks [25], however,

the best performance was achieved using support vector

machines (SVM) [27]. SVM transforms a two-class fea-

ture space, where the classes overlap, into a new enlarged

feature space where the classification boundary is linear.

Thus, a simple linear classification can be designed in the

transformed feature space in order to separate both classes

. The original feature space is transformed using a function

h(s), however, for the classification only the kernel function

K(s, s′) = 〈h(s), h(s′)〉 that computes inner products in

the transformed space is required. In our case, the best

classification was obtained using a Gaussian Radial Basis
(RBF) function kernel defined by [28]:

K(s, s′) = e−||s−s||2 (3)

where the linear boundary, i.e., the separating hyperplane in

the transformed space, is computed using the Least–Squares

approach [24].

The performance of the classifier was defined as the ratio

of the detection windows that were correctly classified to

the total number of detection windows. The performance

was validated using cross-validation, a technique widely

implemented in machine learning problems [29]. In cross-

validation, the samples are divided into F folds randomly.

F − 1 folds are used as training data and the remaining

fold is used as testing data to evaluate the performance of

the classifiers. We repeated this experiment F times rotating

train and test data. The F individual performances from the

folds are averaged to estimate the final performance of the

classifiers.

III. EXPERIMENTAL RESULTS

We experimented with 20 representative salmon fillets

obtained at a local fish market. The average size of these

fillets was 15×10 cm2. According to pre-processing and seg-

mentation techniques explained in Section II-B we obtained

several regions of interest where fish bones could be located.

The area occupied by these regions of interest corresponds

to aprox. 12% of the salmon fillets as shown in Fig. 4.

From the mentioned regions of interest we obtained 7697

detection windows of 10×10 pixels. Each window was
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Figure 5. Classification performance with a 95% confidence interval using
the first m features (refer to Table I to see a description of the features).

labeled with ‘1’ for class bones and ‘0’ for no-bones.

From each window 279 features were extracted according

to Section II-C. After the feature extraction, 75% of the

samples from each class were randomly chosen to perform

the feature selection. The best performance was achieved

using Sequential Forward Selection. The best 24 features

are shown in Fig. 5 in ascending order.

The performance of the classification using SVM classifier

and the first m selected features was validated using an

average of ten cross-validation with F = 10 folds as

explained in Section II-D. The results are shown in Fig 5.

We observe that by using 24 features, the performance was

almost 94.7% with a 95% confidence interval between 94.3

and 95.1%.

IV. CONCLUSION

The need for more information on the quality control of

several fish types by means of quantitative methods can be

satisfied using X-ray testing, a non-destructive technique

that can be used to measure, objectively, intensity and

geometric patterns in non-uniform surfaces. In addition the

method can also determine other physical features such

as image texture, morphological elements, and defects in

order to automatically determine the quality of a fish fillet.

The promising results outlined in our work show that we

achieved a very high classification rate in the quality control

of salmon when using a large number of features combined

with efficient feature selection and classification. The key

idea of the proposed method was to select, from a large

universe of features, only those features that were relevant

for the separation of the classes. We tested our method

on 20 representative salmons yielding a performance of

95% in accuracy using 24 features and support vector

machines. Although the method was validated with salmon

fillets only, we believe that the proposed approach opens

Figure 6. Results obtained in four X-ray images. The columns correspond
to enhanced images, classified fish bones and post processed fish bones.
The first row corresponds to the example shown in Fig. 4.

new possibilities not only in the field of automated visual

inspection of salmons but also in other similar fish.
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